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ABSTRACT
The subjective nature of human thought, preference, and
sense of relevance will continue to thwart ranked lists and
predictive agents, regardless of the quality and quantity of
data. We can side-step these human obstacles by viewing
search as collaborative process between humans and com-
puters and allowing humans to use their subjective judge-
ment in navigating an objectively organized tree of results.
With the application of knowledge-based methods we can
categorize the results of search, but then also use these hi-
erarchical categories as the basis for a browsing tool.

We present theoretical and experimental evaluation of an
IR system for retrieval of medical articles. The PifMed sys-
tem presents medline results to the user, categorized by
the mesh terminology and hierarchically browsable. Practi-
cal evaluation conducted by within-group controlled experi-
ments of a prototype system show a mean speed increase of
26 seconds and a strong user preference when directly com-
pared to PubMed. Theoretical evaluation argues a move
from lists to trees, is a move from a browsing structure to a
navigation structure, and likens the shift to parallel the shift
from list search to tree search, where the users’ subjectivity
is the comparator.

1. INTRODUCTION
The problems of linguistic ambiguity persist and continue

to thwart AI research. Even if these problems could be
solved or an effective compromise could be found, the hu-
man subjective sense of relevancy is an obstacle with no
solution. Even if computers could read minds, automatic
agents would still be stymied by the common condition ev-
ery searcher has faced “I don’t know what I’m looking for,
but I’ll probably know it when I see it.” The fact is humans
are unpredictable and searches cannot — nor will ever —
be completed without cognitive effort by the user. Search
must be seen as a collaborative task between human and
computer, a dynamic process, not a packaged product.

The information gathering process has an artificial bound-
ary between the query process and the browsing process,
that is, browsing often leads to query refinement. Conven-
tional search reinforces those boundaries. If we can blur the
artificial boundary between query and browsing, by making
all query refinement an implicit part of the browsing pro-
cess we can deepen the collaboration between human and
computer in IR. When we blur the semantic divide between
user and computer (as the Semantic Web does) we are given
an opportunity to make query refinement implicit and we
enter a new phase of human computer interaction. When
we organize information in the way humans think, humans
can think their way through the information.

The Semantic Web as foreseen [1] is a curated web, cura-
tion and categorization are essential to traditional libraries

and many systems of organization have been developed by
libraries for this purpose, thus we offer a glimpse into ‘Web
3.0’ by taking a step back into library science. As the web
starts to behave more like a library, we thought look at li-
braries for how to progress the Web. In this paper we show
how curation and knowledge-based methods can be used in
interface design to direct users to relevant items, faster and
in a way they prefer over conventional lists.

One problem for categorization is the difficulty and ex-
pense of obtaining high-quality, gold-standard data. Within
the medical domain we a have a unique opportunity to take
advantage of a large, freely available, expertly curated, hier-
archically categorized, linguistically sophisticated document
corpus: medline. This corpus is categorized into a mature,
domain-specific, annually-updated taxonomy called mesh by
domain experts at the U.S. National Library of Medicine
(nlm). This database holds over 19 million items, each in-
dexed with dozens of terms from a meticulously-created hi-
erarchical system of over 26,000 descriptors. It is of the high-
est quality, there are millions items and it is freely available,
thus with the usual constraints to categorization removed,
practical analysis (through strong experimental methods)
can be used to directly compare the conventional search in-
terface to a search interface only possible with a human-
curated collection.

2. RELATED WORK
Categorized hierarchies are nothing new to the Web. There

several examples of browsable category hierarchies on the
www: Wikipedia [13], Yahoo! Answers [14], Open Direc-
tory Project [9] which has been implemented into Google Di-
rectory (www.google.com/dirhp), and U.S. Patent Database
[11] to name a few. There are many hierarchical classi-
fication systems used by library systems, for example the
Dewey Decimal System [12], Library of Congress Classifica-
tion, acm Computing Classification System, and the Medi-
cal Subject Headings (mesh) used by the U.S. National Li-
brary of Medicine are some of the important taxonomies. If
the reader has an interest in related systems, I would direct
them to an excellent survey paper on the subject of web
clustering engines [2].

3. CATEGORICAL EXPLORATION
Ranked lists with large result sets leave lower ranked re-

sults disregarded by users. That is, when 100s of items are
returned for a given query, the results further down the list
are practically unreachable to the user. With a long list the
user has little choice for exploration: grind through every
result; or skip down the list until they find a relevant item;
or give up, refine the query and start from scratch. We offer
a solution that makes large result sets practical for human
use: categorical exploration.



We examine a hierarchical category tree model in place
of a ranked list model. In this model, the user is presented
the results in a interactive browsable tree where the nodes
are category names and the leaves are articles. The parent-
child relationships between nodes are the hypo/hypernymic
relationships pre-defined in a hierarchical category system
(such as the mesh Taxonomy). The user browses the system
in the same way they would a file hierarchy in Windows,
Linux or Mac OS.

3.1 From Browsing to Navigation Structure
By shifting from a ranked list to a browsable tree, we

move from a browsing structure, to a navigation struc-
ture. Navigation requires a ‘geography’: stars, street signs,
landmarks or maps; a way for persistent features to guide
the user. A list algorithm creates a substantively different,
wholly disposable ordering for each different query phrase,
however, a hierarchy persists despite the query. Thus the
hierarchical taxonomy acts as a persistent ‘geography’ to be
comprehended and remembered. Each search session shows
paths through the tree which can be remembered to aid fu-
ture travels. Here is a tool with a knowable, predictable,
sensible underpinning. Only with this system can we nav-
igate a result set – the hierarchy (e.g. mesh) provides the
map. Lists, on the other hand, are constrained to one path,
browsed and skimmed in only one direction, down.

In a list each item must be examined in linear order,
whereas (like any tree) the order in this tree is not linear.
Thus the search path is not dictated by the structure but de-
termined by the user. In fact, like any tree, each article, by
comparison, is very close to ‘the top of the list’; each article
(in mesh) is less than 10 steps from the root. And since each
article is in multiple categories, there is more than one path
to each article. In a list any duplication of articles would
be frowned on as needless redundancy, here we can see it as
beneficial. Unlike a list, this non-linear structure makes no
judgement on ‘the best order’, but allows each user to find
their own order of visitation, and only with this system are
different paths to the same result possible.

3.2 Tree Structure Versus List Structure
Instead of a list browsing structure, we use a tree brows-

ing structure. A parallel can be seen between computer
search and human search. Think of the list data structure
vs the tree data structure. Each item in a list must be viewed
sequentially, this linear order of visitation is dictated by the
structure. In a tree, the order of visitation is non-linear,
a series of choices determine the path. For tree search we
have a well-defined objective ordering (alphabetical), ob-
jective comparator (greater/less than), and an objective
end-state (exact match).

If we see the human as part of the algorithm, and the
users’ subjective judgment as the comparator, then we can
see the category tree structure as enabling tree search for
information retrieval. At each node in the tree (category),
the user chooses to visit the node (i.e. see its children) or
chooses to move to a sibling, just as the comparator in tree
search makes a choice at each node. Each leaf in the tree
(article) is a possible match for the end state, but this match-
ing is complex and subjective to each user. Since only the
user can judge relevancy at each node and leaf, it is benefi-
cial to let the user into the problem-solving mechanism, into
the algorithm. When the human and computer co-operate
this way, strengths of each benefit the task. If the human
is taken as part of the algorithm, we have an arguably ob-
jective ordering (hypo/hypernymic hierarchical categoriza-
tion), a subjective comparator (more/less specifically rel-

evant judgement of category) and an subjective end-state
(satisfaction of information need).

3.3 Subjectivity as Guide Instead of Obstacle
Objectivity still has a major role in this system, but rather

than judging relevancy in relation to the query, it is in judg-
ing relevancy of hypo/hypernymic relationships (known as
isa relationships) in the categorization hierarchy. Deter-
mining if two categories have a hyponymic or hypernymic
relationship is much less subjective than if Order X is the
best ordering of results given Query Phrase Y. Consensus is
possible for the majority of categories and near consensus
for all but a few. This can be supported by the popularity
and successes of WordNet and intensive work on ontologies.

3.4 Implicit Query Refinement
Each category over which the user browses in an opportu-

nity to focus the formulation of the query. By blurring the
lines of distinction between query formulation and browsing
we can make the search process more responsive to human
thought. There is an opportunity in a hierarchical cate-
gorization tree for the user to merge query refinement and
article selection into the same action, browsing.

Even experienced users of search engines have used a query
phrase which was ‘the best they could do at the moment’
rather than ‘the best that could be done’, that is, used a
query that quickly came to mind — just to get started —
because the right words were elusive. It is these queries in
particular that would benefit from query refinement. An
important point is that new query phrases need not be en-
tered, the system needs no feedback from the user to pro-
duce a new set for the user to browse. The refinement is an
implicit function of the browsing process.

3.5 Relationships between Results
There is a dimension of query search results which is ig-

nored by ranked lists. A ranked list, ranks solely on the
dimension of relevancy to the query, that is, only the rela-
tionship to the query informs the ordering. There is another
important dimension which can be used as the basis of orga-
nization: the relationship of each result to each other result.
All results are related to the query, but in the category tree
they are presented to the user in how they are related to
each other, in categories. These categories are then related
to each other to form a tree. A ranking system assumes
independence in this dimension for simplicity sake, focusing
instead on guessing the subjective needs of user based on
the query.

Likewise, two users may use identical queries for com-
pletely different information needs. The query is a moving
target, yet when we rank, we rank based on query. That
means every identical query produces an identically ranked
list. The subjective nature of human perception causes prob-
lems for these objective computational models; no matter
how good they are, no one objectively ordered list will likely
satisfy the subjective information needs of all users. Fur-
thermore, when we rank based on query alone, our ranking
is only as good as the query. Many users create poor queries
because they have only a vague idea of what they are looking
for, thus the query is often a poor match for the informa-
tion need. All the assumptions of ranking systems fail when
this is the case. Since a hierarchy does not rank the results,
it makes no assumptions of this kind, and the user can first
browse categories (not articles) for relevancy, and upon find-
ing one, can then continue searching from a ‘more relevant
footing’.

This method is particularly beneficial to searches which re-



quire high recall. Exploration being categorical, the user can
use these well-defined boundaries to isolate ideas, methods
and perspectives, then sample from semantically different
categories as an exploration strategy to reveal the breadth
of a result set without re-querying the system.

4. PIFMED SYSTEM
PifMed organizes medline search results into a browsable

tree according to the mesh categories which have been as-
signed to each item. A screenshot of PifMed is shown in
Figure 1. PubMed is the internet interface that searches
medline and presents the results in a conventional ranked
list. In this section we describe some details of these med-
line, PubMed and mesh as they pertain to this implemen-
tation and this experiment.

Index Medicus, created in 1879, was a comprehensive in-
dex of medical journal articles which evolved into the US
National Library of Medicine (nlm). This index was sup-
planted by PubMed (also a nlm project) and ceased publi-
cation in 2004. The largest database searched by PubMed is
medline [3]. Citations in medline are collected from 5,582
(as of Nov 2011) [7] medical journals and it has 19,455,996
total records (as of Feb 2012) [6] from 1966 to the present
with articles added to medline at the average rate of over
2000/day [6]. Each of these articles have been manually in-
dexed by one of 100 human domain experts with mesh ter-
minology, 699,420 were indexed in 2010 [5]. Since PubMed
searches medline and other resources, it is a little larger: it
has 21,578,070 total records (as of Feb 2012) [6] from 1949
to the present. Other sources it searches are, for exam-
ple: (1) the 460,488 [6] articles not yet indexed with mesh
terminology, but are waiting to be processed (i.e. indexed
with mesh) into the medline system, and (2) the 519,953
[6] records from oldmedline which contains records from
the years 1946 to 1965. It is free to search medline and
PubMed, and popular: it was directly searched 1.8 billion
times in 2011 [5], an increase of 13% over the 1.6 billion
searches in 2010.

The Medical Subject Headings (mesh) are used as the ba-
sis for the navigation structure in PifMed. Updated yearly,
the mesh taxonomy was specifically designed by medical li-
brarians for the organization of medical literature. With 16
main category headings at the root, and as deep as 11 levels,
the 26,142 descriptors in mesh 2011 [8] provide a thorough
categorization, ideal for our task. Indexers can select one
or a few specific mesh descriptors associated with an article
as a Major Topic. PifMed uses this feature of the data to
give users the option to narrow (i.e. an article is added to
a category node only if that category is marked as a Major

Topic of the article) or widen (i.e. category nodes include
every article associated with that category) the search.

5. EXPERIMENT
The study design has two components, paired use-time

analysis to determine efficiency and a questionnaire to eval-
uate usability. The two systems tested PubMed and PifMed
where both used to search medline only and filter out ar-
ticles without abstracts. PubMed presents the articles in a
ranked list (20 per page) and PifMed presents the articles
in a browsable tree of hierarchically organized categories:
exact same article set, different presentation.

Research Question.
In general, is the proposed navigation structure more ef-

fective than ranked lists for medline?

Task.
First, participants were shown a short PowerPoint presen-

tation demonstrating each system. Then participants were
asked to enter a query of their choosing into System A and
find an article of interest. Then participants were asked to
enter the exact same query into System B and find the same
article or one equally or more interesting. Each user did 3
queries, then filled out a short, 3-part questionnaire. Partic-
ipants were given a small monetary compensation for their
time. All testing took place in a secure, quiet, well-lit, grad-
uate computer science lab at Dalhousie University. The use-
time data for each participant query is recorded (in seconds)
as a pair (e.g. ‘diabetes’[PifMed(91), PubMed(127)]).

All factors have been equalized, randomized or isolated for
this study. The within-group experimental design equalizes
many possible confounding factors since the same partici-
pant uses each system immediately after the other. So the
sense of relevancy is duplicated, the query terms are the
same, the returned article set is identical, the time of day,
user age, gender, and other general attributes were identical.
To eliminate order effects, the order of systems is random-
ized for every query. The only difference is the interface, so
any differences can be attributed to that isolated factor with
a high degree of confidence. These pairs are then evaluated
using a paired t-test.

With order effects randomized, the two common difficul-
ties with within-groups study designs remain: fatigue and
learning effects [4]. Fatigue is not an issue since no partic-
ipant spent more than 40 minutes to complete study. The
learning effect was largely uncontrolled. However, for users
unfamiliar with both systems, it would have an equal (thus
negligible) effect. For participants familiar with PubMed,
this effect would be a handicap to the test system, thus
should the reader believe the learning effect to be a signifi-
cant factor for this study design, they should see chance of
Type B error (false negative) as higher than usual.

Population.
Each user rates (from 1 to 7) their own familiarity with

9 aspects: Computers, Computer Search, MeSH, PubMed,
Medicine, Biology, Psychology, Health Informatics and Bioin-
formatics. We use these aspects to identify populations within
the pool of users. We have two sets: General Users and Tar-
get Users. The profiles of these sets are shown in Table 1.
A General User is any user scoring at least a 5 in both
Computers and Computers Search which we feel are the key
competencies. For this study all 27 participants tested fit
this profile. A Target User is a user scoring at least a 6 in
Computers and Computer Search and at least a 4 in one of the
following PubMed, Medicine, Biology, Psychology, Health In-
formatics and Bioinformatics. For this study 22 participants
of the 27 participants tested, fit this profile.

General Target Familiarity with...
7 7 Computers
7 7 Computer Search
2 2.5 MeSH
3 4.5 PubMed
4 5 Max(PubMed, Medicine, Biology,

Psychology, Health/Bioinformatics)

Table 1: The self-assessed knowledge ratings of our
participants was used to separate out the Target
User sub-group.



Figure 1: The PifMed user interface. The root of the tree is open showing 10 MeSH main categories, each
followed with a number which indicates how many articles are in each sub-tree, the 10th node is open. We see
a fully open article node with the title ‘Computation of Emotions in...’ under the main heading of Information
Science and sub-heading of Communication. The authors, abstract and journal are revealed as are the four
highlighted MeSH categories which are also associated with this article. This article is duplicated into each
of these four category nodes on the tree.

6. RESULTS
After the search tasks were complete the user was asked to

fill out a questionnaire. Part II of that questionnaire is the
basis for our determination of the usability of PifMed alone
and the usability of PifMed in comparison to PubMed. Ta-
ble 2 shows the results of this part of the questionnaire for
the General User population and for the Target Users. Each
question in Table 2 has two rows. The first row displays
the results for PifMed alone and the second row displays the
results for the comparison of PifMed and PubMed.

The reader will notice, each question in Table 2 has an as-
pect in bold before each question. These aspects are known
as the ‘5 Es’ of usability: Effectiveness, Efficiency, Engage-
ment, Error Tolerance, and Easy-to-Learn [10]. Each in-
stance asks a question to evaluate one of those aspects.
There are 2 questions for each aspect. The final question
asks for an overall rating.

Each of these aspects can be measured as the median score
of all ratings of questions of a that aspect. For example, the
4 ratings for “Effectiveness: Did PifMed give you relevant
results?” and “Effectiveness: Did PifMed help you make
up your mind on what you were looking for?” from each

user can be averaged to give PifMed an overall rating for
Effectiveness, Table 3 shows the median results for each of
the populations.

6.1 Statistical Conclusions
These tests show that participants find articles in large

result sets faster with a PifMed than with PubMed. The
mean use-time for PifMed is always faster in the final analy-
sis, no matter how the data has been partitioned, but PifMed
is strongest when short search result sets are removed, for
both populations (p = 0.0013 & p = 0.0113). Overall, this
set of participants were an average ∼26 seconds faster with
a PifMed than with PubMed.

Furthermore, if speed was negligible, PifMed is still the
more usable, since all users rated PifMed as more usable
than PubMed. The analysis of the results show PifMed to
be faster and a better user experience for this task.

7. LIMITATIONS
This system is meant for navigating large result sets, thus

very short result sets can be seen as a limitation. There is no
doubt ranked lists are a more effective means of displaying



General Target Questions
6 6 Effectiveness: Did PifMed give you
5 5 relevant results?
4 4 Efficiency: Did PifMed respond quickly?
4 4
6 6 Engaging: Did PifMed encourage
6 6 you to explore the results?
7 7 Error Tolerance: Did you notice
4 4 any errors in PifMed?
7 7 Easy to Learn: Was PifMed easy
5 5 to learn and understand?
6 5 Effectiveness: Did PifMed help you make
6 5 up your mind on what you were looking for?
6 6 Error Tolerance: How would you rank
5 4 your confidence in the results?
6 6 Easy to Learn: Do you have a good
5 4 understanding of the capabilities of PifMed?
6 6 Efficiency: Rate the ease (or difficulty)
5 5 in retracing your steps.
6 5.5 Engaging: Did PifMed help you browse
6 5 to interesting papers you did not expect?
6 6 Overall: Please rate the ease of using
5 5 PifMed overall.

6 6 Median for PifMed
5 5 Median for Comparison
6 5 Median for Overall Usability

Table 2: The median results of Part II of the ques-
tionnaire. For each population there are two me-
dians for each question. The first number is the
median user rating for PifMed alone. The second
number is the median user rating for the compari-
son of PifMed to PubMed.

General Target Usability Measure
6 5 Effective

4.5 5 Efficient
6 6 Engaging
6 5.5 Error Tolerant

5.5 6 Easy to Learn

6 5 Total Average Usability

Table 3: The final analysis of the qualitative results
for the General User and Target User populations.
Medians (on the left) of each of the measures of
usability are shown and the overall usability is shown
on the bottom line.

20 or less results, these results can be seen to support this.
This is an acceptable limitation since this is not the task
PifMed is meant to tackle.

This system relies on the efforts of the nlm Indexers. One
could see this dependency as a limitation: Should these in-
dexers stop indexing, no new articles could be added to the
tree. This is not a certainty. Many publishers (and authors)
presently include suggested mesh categorization meta-data
with citation submissions to the nlm. Furthermore should
the task of indexing be resumed by users, Wikipedia shows
high-quality content can be publicly generated.

This system will only function within the confines of med-
line citations. This limitation to the medical domain is only
a constraint of this implementation, not of the navigational
structure itself. Should any other digital library, such as the
acm Portal (http://portal.acm.org), provide a deep and rig-
orous hierarchical categorization and make the system pub-
licly available, this structure could be quickly adapted to
another domain. In fact, preliminary tests were done on the
acm category hierarchy, but the hierarchy was too shallow
to provide comparable results.

Population General Users Target Users
Result Set Size All Long All Long

PubMed Mean 100s 106.62s 95.79s 102.23s
PifMed Mean 82.17s 80.18s 83.56s 78.32s

Mean Diff. 17.83s 26.44s 12.23 23.91s
PubMed STD 64.02s 64.13s 68.95s 69.07s
PifMed STD 42.78s 41.59s 43.36s 41.53s

p-value 0.0146 0.0013 0.0642 0.0113

Table 4: A detailed summary of the statistical anal-
ysis. The Mean Differences and statistically signifi-
cant p-values (p <0.05) are in bold.

8. FUTURE WORK
The mature, integrated knowledge-based systems devel-

oped at the nlm enable several avenues for future work.
Through the Unified Medical Language System (umls) any
mesh descriptor can be used to access domain-specific nlp
tools (specialist nlp System), a network of associative/ hi-
erarchical semantic relationships (umls Semantic Network)
and a mapping to +100 other categorization systems (umls
Metathesaurus). For example, we could use the umls Meta-
thesaurus to map the mesh categorization into The Library
of Congress classification for an alternate tree construction.
Furthermore, we could take advantage of the umls Seman-
tic Network to construct trees with associative relationship
links and nodes (such as process of, part of, treats, disrupts) in
tandem with the hierarchical tree to give users other mean-
ingful pathways through which they may explore large result
sets.

8.1 PifMed Web Version
Some of the limitations found in the user study have been

addressed with the implementation of a second version of
PifMed. Figure 2 shows the a prototype web version of
PifMed, which was built with a combination of html, xml,
xslt, Javascript, Perl and php, to address some of the lim-
itations of the original Perl/Tk version. Specifically, lack of
web version, status bar (built-in to web browser), interac-
tive hyperlinked category names, improved node toggling
and full text retrieval. Being web-based, the foundation
was coded in html, the browsable tree was implemented in
Javascript, the back-end search engine remains in Perl, the
articles are returned in xml and rendered with xslt and the
whole system is glued together with php.

9. CONCLUSION
We have shown users prefer PifMed to PubMed in terms

of usability, demonstrated by the analysis of Part II of the
questionnaire. It has also been shown that users browsed to
interesting results faster with PifMed than with PubMed.
Paired t-tests have shown this statistically significant result
to have improved significance when small results sets are
partitioned out of the data set. This finding strengthens the
evidence supporting my hypothesis that use of the hierarchi-
cal navigation structure is more effective and efficient then
the conventional method for browsing large result sets.

Its success with large result sets is a key finding for 3
reasons:

1. Query Expansion. Query expansion returns increases
the size of result sets. For query expansion to be viable
we need a way for users to adequately navigate those
results, PifMed is such a way.

2. Growth of Corpus. There is every indication med-



Figure 2: The web version of PifMed has a brows-
able tree shown in the left frame and an article, ren-
dered into HTML from XML, on the right.

line will continue to grow, thus result sets for any
given query will continue to grow. However, the rate of
growth within Categories growth will be slower, that is,
∼50,000 new articles/week will be categorized across
26,000 categories. The hierarchical categorization mit-
igates the rate of growth by localizing growth into cat-
egories.

3. Longevity of Queries Changes in result sets will be
focused into categories instead of drastically reorganiz-
ing ranked lists. Since no matter how many articles are
added, old articles will always remain in their original
category: PifMed behaves predictably over time.

The reliance on the mesh taxonomy was a major concern.
Since it is the foundation of this particular implementation
of this browsing model, if users rejected it as navigational
structure, the whole project would fail. However, these re-
sults show that users accepted and quickly adapted to this
largely unfamiliar taxonomy. Evidence of this is shown by
the very few complaints about mesh in the written com-
ments or verbal comments. But the strongest support for
the choice to base the navigation system on mesh comes
in the plain fact that users used it quickly and effectively
to navigate to interesting results using only mesh as their
guide, with no previous training or experience with the tax-
onomy.
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