Natural Language Processing CSCI 4152/6509 — Lecture 14 P0 Discussion (2); Bayesian Networks and HMM Inference

Instructors: Vlado Keselj

Time and date: 14:35 – 15:55, 18-Nov-2025

Location: Studley LSC-Psychology P5260

Previous Lecture

- P0 discussion (1): P-03, P-07, P-08, P-09, P-11,
 P-12, P-20, P-21, P-22, P-23
- HMM Brute-force approach
- HMM Inference: Viterbi algorithm

P0 Topics Discussion (2)

- Continued discussion of individual projects as proposed in P0 submissions (part 2)
- Projects discussed: P-01, P-04, P-06, P-13, P-14, P-15, P-16, P-17

HMM as Bayesian Network

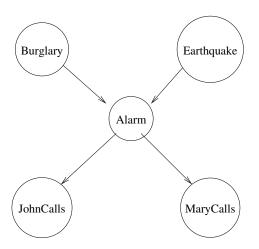
- Viterbi algorithm is an efficient way to solve a special problem:
 - completion with known observables and unknown hidden nodes of an HMM
- General approach:
 - Treat HMM as Bayesian Network
 - Apply Product-Sum (i.e., "Message-passing")
 algorithm for efficient inference

Bayesian Network Model

- Also known as: Belief Networks, or Bayesian Belief Networks
- A directed acyclic graph (DAG)
 - ▶ Each node representing a random variable
 - Edges representing causality (probabilistic meaning)
- Conditional Probability Table (CPT) for each node
- Bayesian Network assumption:

$$P(\underbrace{V_1, V_2, \dots, V_n}_{\text{full configuration}}) = \prod_{i=1}^n P(V_i | \mathbf{V}_{\pi(i)})$$

Bayesian Network Example



Bayesian Network Assumption

Bayesian Network Assumption for previous example:

$$\mathrm{P}(B,E,A,J,M) = \mathrm{P}(B)\mathrm{P}(E)\mathrm{P}(A|B,E)\mathrm{P}(J|A)\mathrm{P}(M|A)$$

- Probability of a complete configuration is a product of conditional probabilities
- Each node corresponds to one conditional probability: P(B), P(E), P(A|B,E), P(J|A), P(M|A)
- CPTs (Conditional Probability Tables are model parameters)

Conditional Probability Tables

A	J	P(J A)
\overline{T}	T	0.90
T	F	0.10
\overline{F}	T	0.05
F	F	0.95

 $T \mid D \mid T \mid A \mid$

A	M	P(M A)
\overline{T}	T	0.70
T	F	0.30
\overline{F}	T	0.01
F	F	0.99

Computational Tasks

Evaluation:

$$P(V_1 = x_1, ..., V_n = x_n) = \prod_{i=1}^n P(V_i = x_i | \mathbf{V}_{\pi(i)} = \mathbf{x}_{\pi(i)})$$

- Simulation
- Learning from complete observations
- Inference in Bayesian Networks

Inference Example using Brute Force

$$P(B = T | J = T) = \frac{P(B = T, J = T)}{P(J = T)}$$

$$P(B = T, J = T) = \sum_{E,A,M} P(B = T, E, A, J = T, M)$$

$$= \sum_{E,A,M} P(B = T)P(E)P(A | B = T, E)$$

$$P(J = T | A)P(M | A)$$

$$\approx 8.49017 \cdot 10^{-4}$$

(continued)

$$\begin{split} \mathbf{P}(J=T) &= \mathbf{P}(B=T,J=T) + \mathbf{P}(B=F,J=T) \\ \mathbf{P}(J=T) &= \mathbf{P}(B=T,J=T) + \mathbf{P}(B=F,J=T) \approx \\ 8.49017 \cdot 10^{-4} + 5.12899587 \cdot 10^{-2} &= 0.0521389757 \\ \\ \mathbf{P}(B=T|J=T) &= \frac{\mathbf{P}(B=T,J=T)}{\mathbf{P}(J=T)} \approx \\ \\ \frac{8.49017 \cdot 10^{-4}}{0.0521389757} \approx 0.0162837299467699. \end{split}$$

General Inference in Bayesian Networks

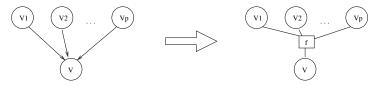
- In some Bayesian Networks inference is always expensive; e.g., joint distribution has a very large number of parameters
- Can we be more efficient if number of parent nodes is limited?
- Naïve Bayes or HMM has a limit of parents to 1
- If we limit number of parents to 2, this may already lead to an NP-hard inference problem
- Proof: a reduction from Circuit Satisfiability problem

Sum-Product Algorithms for Bayesian Networks

- Basic idea: optimizing sum-product calculation using graph structure
 Described in "Factor graphs and the Sum-Product Algorithm" by Kschishang, Frey, and Loeliger in 2000
- Algorithm overview:
 - Construction of a factor graph
 - Message-passing algorithms
- Construction of the factor graph
- Principles of message passing

Factor Graph

• Introduce factor nodes:



Factor graph captures the structure of computation

Factor Graph Example

