Natural Language Processing CSCI 4152/6509 — Lecture 13 P0 Project Topics Discussion (1); HMM Model

Instructors: Vlado Keselj

Time and date: 14:35 – 15:55, 06-Nov-2025 Location: Studley LSC-Psychology P5260

Previous Lecture

- N-gram Model Smoothing (continued):
 - Witten-Bell smoothing
- POS tagging: Introduction
- Open word categories
- Closed word categories
- Other word categories
- Hidden Markov Model (HMM):
 - idea, definition, graphical representation
 - HMM assumption
- HMM POS Example

P0 Topics Discussion

- Discussion of individual projects as proposed in P0 submissions
- Projects discussed: P-03, P-07, P-08, P-09,
 P-11, P-12, P-20, P-21, P-22, P-23

Learning HMM (Training) with Smoothing

 Let us learn HMM from completely labeled data:

```
swat V flies N like P ants N
time N flies V like P an D arrow N
```

 We will use smoothing in word generation, by giving a 0.5 count to all unseen words

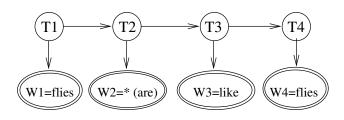
Generated Tables

T_1	$P(T_1)$	
N	0.5	
V	0.5	

T_{i-1}	T_i	$P(T_i T_{i-1})$	T_i	W_{i}	$ P(W_i T_i)$
D	N	1	D	an	$2/3 \approx 0.666666667$
N	Р	0.5	D	*	$1/3 \approx 0.3333333333$
N	V	0.5	N	ants	$2/9 \approx 0.222222222$
P	D	0.5	N	arrow	$2/9 \approx 0.222222222$
P	N	0.5	N	flies	$2/9 \approx 0.222222222$
V	N	0.5	N	time	$2/9 \approx 0.222222222$
V	P	0.5	N	*	$1/9 \approx 0.1111111111$
			P	like	0.8
			P	*	0.2
			V	flies	0.4
			V	swat	0.4

0.2

Tagging Example



$$\begin{split} & \underset{T}{\operatorname{arg \; max}} \operatorname{P}(T|W = \mathsf{sentence}) = \\ & = \underset{T}{\operatorname{arg \; max}} \frac{\operatorname{P}(T,W = \mathsf{sentence})}{\operatorname{P}(W = \mathsf{sentence})} = \underset{T}{\operatorname{arg \; max}} \operatorname{P}(T,W = \mathsf{sentence}) \\ & = \underset{T}{\operatorname{arg \; max}} \operatorname{P}(T_1) \cdot \operatorname{P}(W_1 = \mathsf{flies}|T_1) \cdot \operatorname{P}(T_2|T_1) \cdot \operatorname{P}(W_2 = *|T_2) \\ & \cdot \operatorname{P}(T_3|T_2) \cdot \operatorname{P}(W_3 = \mathsf{like}|T_3) \cdot \operatorname{P}(T_4|T_3) \cdot \operatorname{P}(W_4 = \mathsf{flies}|T_4) \end{split}$$

"Brute-Force" Approach

- \bullet Try all combinations of variable values $T_{1},\,T_{2},\,T_{3},\,$ and T_{4}
- Calculate the overall probability for each of them using the formula

$$\begin{split} & P(T_1) \cdot P(W_1 = \mathsf{flies}|T_1) \\ & \cdot P(T_2|T_1) \cdot P(W_2 = *|T_2) \\ & \cdot P(T_3|T_2) \cdot P(W_3 = \mathsf{like}|T_3) \\ & \cdot P(T_4|T_3) \cdot P(W_4 = \mathsf{flies}|T_4) \end{split}$$

Choose the maximal probability

Brute-Force Approach (tabular view)

Efficient Tagging with HMM

- Rather than using the brute-force approach, we can incrementally optimize the product expression by partial maximization from left to right
- One way to represent this is by using a table, which leads to the dynamic programming solution, or the Viterbi algorithm
- The second way to represent this computation is using message passing, or product-sum algorithm

HMM Inference: Dynamic Programming Solution

- Brute-force approach is too inefficient
- Idea for more efficient calculation: maximize sub-products first
- Dynamic Programming approach: divide problem into sub-problems
 - with a manageable number of sub-problems
- Find maximal partial configurations up to T_1 , then T_2 , T_3 , and T_4

Dynamic Programming Approach (graphical view)

Viterbi Algorithm Example

	$T_1 (W_1 = flies)$	$T_2 \ (W_2 = *)$	$T_3 \ (W_3 = like)$	$T_4 \ (W_4 = {\sf flies})$
-	$P(T_1)P(W_1 T_1)$	$p \cdot P(T_2 T_1)P(W_2 T_2)$	$p \cdot P(T_3 T_2)P(W_3 T_3)$	$p \cdot P(T_4 T_3)P(W_4 T_4)$
D	$0 \times 0 = 0$	DD: $0 \times 0 \times \frac{1}{3} = 0$	DD: $0 \times 0 \times 0 = 0$	DD: $0 \times 0 \times 0 = 0$
		ND: $\frac{1}{9} \times 0 \times \frac{1}{3} = 0$	ND: $\frac{1}{90} \times 0 \times = 0$	ND: $0 \times 0 \times 0 = 0$
		PD: 0	PD: $\frac{1}{50} \times \frac{1}{2} \times 0 = 0$	PD: $\frac{1}{225} \times 0.5 \times 0 = 0$
		VD: 0	VD: $\frac{1}{90} \times 0 \times 0 = 0$	$VD: 0 \times 0 \times 0 = 0$
		max: 0	max: 0	max: 0
N	$0.5 \times \frac{2}{9} = \frac{1}{9}$	DN: $0 \times 1 \dots = 0$	$DN: 0 \times 1 \times 0 = 0$	DN: $0 \times 1 \times \frac{2}{9} = 0$
		NN: $\frac{1}{9} \times 0 \dots = 0$	NN: $\frac{1}{90} \times 0 \dots = 0$	NN: $0 \times 0 \times \frac{2}{9} = 0$
		$PN: 0 \times \ldots = 0$	PN: $\frac{1}{50} \times 0.5 \times 0 = 0$	PN: $\frac{1}{225} \times 0.5 \times \frac{2}{9} = \frac{1}{2025}$
		VN: $0.2 \times 0.5 \times \frac{1}{9} = \frac{1}{90}$	VN: $\frac{1}{90} \times 0.5 \times 0 = 0$	VN: $0 \times 0.5 \times \frac{2}{9} = 0$
		max: $\frac{1}{90}$	max: 0	max: $\frac{1}{2025}$
P	$0 \times 0 = 0$	$DP: 0 \times \ldots = 0$	DP: $0 \times 0 \times 0.8 = 0$	$DP: 0 \times 0 \times 0 = 0$
		NP: $\frac{1}{9} \times 0.5 \times 0.2 = \frac{1}{90}$	NP: $\frac{1}{90} \times 0.5 \times 0.8 = \frac{1}{225}$	NP: $0 \times 0.5 \times 0 = 0$
		$PP: 0 \times \ldots = 0$	PP: $\frac{1}{50} \times 0 \times 0.8 = 0$	PP: $\frac{1}{225} \times 0 \times 0 = 0$
		VP: $0.2 \times 0.5 \times 0.2 = \frac{1}{50}$	VP: $\frac{1}{90} \times 0.5 \times 0.8 = \frac{1}{225}$	VP: $0 \times 0.5 \times 0 = 0$
		max: $\frac{1}{50}$	max: $\frac{1}{225}$	max: 0
V	$0.5 \times 0.4 = 0.2$	$DV: 0 \times \ldots = 0$	$DV: 0 \times 0 \times 0 = 0$	DV: $0 \times 0 \times 0.4 = 0$
		NV: $\frac{1}{9} \times 0.5 \times 0.2 = \frac{1}{90}$	NV: $\frac{1}{90} \times 0.5 \times 0 = 0$	NV: $0 \times 0.5 \times 0.4 = 0$
		$PV: 0 \times \ldots = 0$	PV: $\frac{1}{50} \times 0 \times 0 = 0$	PV: $\frac{1}{225} \times 0 \times 0.4 = 0$
		$VV: 0.2 \times 0 = 0$	$VV: \frac{1}{90} \times 0 \times 0 = 0$	$VV: 0 \times 0 \times 0.4 = 0$
		max: $\frac{1}{90}$	max: 0	max: 0