Natural Language Processing CSCI 4152/6509 — Lecture 11 N-gram Model and Markov Chain Model

Instructors: Vlado Keselj

Time and date: 14:35 – 15:55, 30-Oct-2025 Location: Studley LSC-Psychology P5260

Previous Lectures

- Joint Distribution and Fully Independent Model review
- Classification example:
 - Joint Distribution Model
 - Fully Independent Model
 - Naïve Bayes Model
- Naïve Bayes classification model
 - Assumption, definition, graphical representation
 - Number of parameters
 - Pros and cons, additional notes
 - Bernoulli and Multinomial Naïve Bayes

N-gram Model

- What is Language Modeling
- Language Modeling: Estimating probability of arbitrary NL sentence: P(sentence)
- Alternative definition: Predicting the most likely next word
- N-gram model is a fundamental and intuitive model for this task
- Large Language Models more recently were directly influenced by this previous definition

Speech Recognition Motivation

 Original motivation for Language Modeling comes from Speech Recognition

$$\begin{array}{lll} \underset{\text{sentence}}{\operatorname{arg \; max}} \, P(\text{sentence}|\text{sound}) & = & \underset{\text{sentence}}{\operatorname{arg \; max}} \, \frac{P(\text{sentence}, \text{sound})}{P(\text{sound})} \\ & = & \underset{\text{sentence}}{\operatorname{arg \; max}} \, P(\text{sentence}, \text{sound}) \\ & = & \underset{\text{sentence}}{\operatorname{arg \; max}} \, P(\text{sound}|\text{sentence}) P(\text{sentence}) \end{array}$$

Acoustic model and Language model

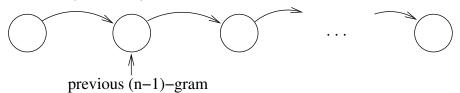
N-gram Language Model

- Predict next word using (n-1) previous words
- Example assumption with n = 3:

$$P(w_1w_2...w_k) = P(w_1|\cdot\cdot)P(w_2|w_1\cdot)P(w_3|w_2w_1)...P(w_k|w_{k-1}w_{k-2})$$

N-gram Model: Notes

- Reading: Chapter 4 of [JM]
- Use of log probabilities
 - similarly as in the Naïve Bayes model for text
- Graphical representation



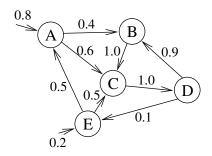
N-gram Model as a Markov Chain

- N-gram Model is very similar to Markov Chain Model
- Markov Chain consists of
 - sequence of variables V_1 , V_2 , ...
 - probability of V_1 is independent
 - each next variable is dependent only on the previous variable: V_2 on V_1 , V_3 on V_2 , etc.
 - Conditional Probability Tables: $P(V_1)$, $P(V_2|V_1)$, . . .
- Markov Chain is identical to bi-gram model, but higher-order n-gram models are very similar as well

Markov Chain: Formal Definition

- Stochastic process is a family of variables $\{V_i\}$ $i \in I$, $\{V_i, i \in I\}$, or $\{V_t, t \in T\}$
- Markov process: for any t, and given V_t , the values of V_s , where s > t, do not depend on values of V_u , where u < t.
- If I is finite or countably infinite: V_i depends only on V_{i-1}
- In this case Markov process is called Markov chain
- Markov chain over a finite domain can be represented using a DFA (Deterministic Finite Automaton)

Markov Chain: Example



This model could generate the sequence $\{A,C,D,B,C\}$ of length 5 with probability:

$$0.8 \cdot 0.6 \cdot 1.0 \cdot 0.9 \cdot 1.0 = 0.432$$

assuming that we are modelling sequences of this length.

Evaluating Language Models: Perplexity

- Evaluation of language model: extrinsic and intrinsic
- Extrinsic: model embedded in application
- Intrinsic: direct evaluation using a measure
- Perplexity, W text, L = |W|,

$$PP(W) = \sqrt[L]{\frac{1}{P(W)}} = \sqrt[L]{\prod_{i} \frac{1}{P(w_{i}|w_{i-n+1}\dots w_{i-1})}}$$

Weighted average branching factor

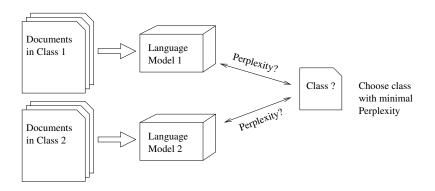
Use of Language Modeling in Classification

• Perplexity, W — text, L = |W|,

$$PP(W) = \sqrt[L]{\frac{1}{P(W)}} = \sqrt[L]{\prod_{i} \frac{1}{P(w_{i}|w_{i-n+1}\dots w_{i-1})}}$$

Text classification using language models

Classification using Language Modeling



Unigram Model and Multinomial Naïve Bayes

 It is interesting that classification using Unigram Language Model is same as Multinomial Naïve Bayes with all words

N-gram Model Smoothing

- Smoothing is used to avoid probability 0 due to sparse data
- Some smoothing methods:
 - Add-one smoothing (Laplace smoothing)
 - Witten-Bell smoothing
 - Good-Turing smoothing
 - Kneser-Ney smoothing (new edition of [JM])

Example: Character Unigram Probabilities

- Training example: mississippi
- What are letter unigram probabilities?
- What would be probability of the word 'river' based on this model?

Unigram Probabilities: mississippi

Add-one Smoothing (Laplace Smoothing)

- Idea: Start with count 1 for all events
- |V| = vocabulary size (unique tokens)
- n = length of text in tokens
- Smoothed unigram probabilities:

$$P(w) = \frac{\#(w) + 1}{n + |V|}$$

Smoothed bi-gram probabilities

$$P(a|b) = \frac{\#(ba) + 1}{\#(b) + |V|}$$

Mississippi Example: Add-one Smoothing

- Let us again consider the example trained on the word: mississippi
- What are letter unigram probabilities with add-one smoothing?
- What is the probability of: river

Mississippi Example: Add-one Smoothing