Natural Language Processing CSCI 4152/6509 — Lecture 8 Similarity Based Classification

Instructors: Vlado Keselj

Time and date: 14:35 – 15:55, 21-Oct-2025 Location: Studley LSC-Psychology P5260

Previous Lecture

- IR evaluation measures review
- Recall-precision curve review
- Text classification review
- Evaluation measures for Text Classification review

Evaluation Methods for Classification

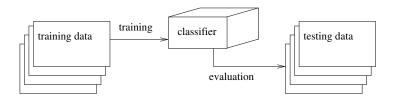
- General issues in classification
 - Underfitting and Overfitting
- Example with polynomial-based function learning
 - Underfitting and Overfitting

Evaluation Methods for Text Classifiers

- Training Error
- Train and Test
- N-fold Cross-validation

Train and Test

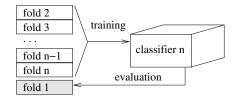
- Labeled data is divided into training and testing data
- Typically training data size : testing data size = 9 :
 1, sometimes 2 : 1



N-fold Cross-Validation

fold 1
fold 2
fold 3
...
fold n
fold n-1

training
classifier 2
evaluation



• • •

Text Clustering

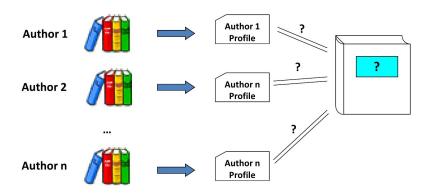
- Text clustering is an interesting text mining task
- It is relevant to the course and a clustering task can be a project topic
- Since it is covered in some other courses, we will not cover it in much detail here
- Some notes are provided for your information

Profile Similarity Text Classification

- Aggregate training text for each class into a profile
- Aggregate testing text into another profile
- Classify according to profile similarity
- If a profile is a vector, we can use different similarity measures; e.g.,
 - cosine similarity,
 - Euclidean similarity, or
 - some other type of vector similarity

CNG Method for Text Classification

- A simple method, initially used for authorship attribution
- Authorship attribution problem:



CNG Method Overview

- Method based on character n-grams
- Language independent
- Based on creating n-gram based author profiles
- Similarity based (a type of kNN method—k Nearest Neighbours)
- Similarity measure:

$$\sum_{g \in D_1 \cup D_2} \left(\frac{f_1(g) - f_2(g)}{\frac{f_1(g) + f_2(g)}{2}} \right)^2 = \sum_{g \in D_1 \cup D_2} \left(\frac{2 \cdot (f_1(g) - f_2(g))}{f_1(g) + f_2(g)} \right)^2 \tag{1}$$

where $f_i(g) = 0$ if $g \notin D_i$.

Preparing character n–gram profile (n=3, L=5)

```
Marley was dead: to begin with. There is no doubt whatever about that...
```

Preparing character n-gram profile (n=3, L=5)

Mar
ley was dead: to begin with.
There is no doubt whatever about that...

(from Christmas Carol by Charles Dickens)

n=3

Mar

Preparing character n–gram profile (n=3, L=5)

```
Marley was dead: to begin with.
There is no doubt whatever about that...
```

(from Christmas Carol by Charles Dickens)

m=3 Mar

Preparing character n–gram profile (n=3, L=5)

```
Marley was dead: to begin with. There is no doubt whatever about that...
```

```
m=3
Mar
arl
rle
```

Preparing character n–gram profile (n=3, L=5)

```
Marley was dead: to begin with. There is no doubt whatever about that...
```

```
m=3

Mar
arl
rle
ley
```

Preparing character n–gram profile (n=3, L=5)

```
Marley was dead: to begin with.
There is no doubt whatever about that...
```

```
m=3

Mar
arl
rle
ley
ey_
```

Preparing character n–gram profile (n=3, L=5)

```
Marle\mathbf{y} was dead: to begin with.
There is no doubt whatever about that...
```

```
m=3

Mar
arl
rle
ley
ey_
y_w
```

Preparing character n–gram profile (n=3, L=5)

```
Marley was dead: to begin with.
There is no doubt whatever about that...
```

```
Mar
arl
rle
ley
ey_
y_w
_wa
was
```

Preparing character n-gram profile (n=3, L=5)

Marley was dead: to begin with.

There is no doubt whatever about that...

n=3		_th	0.015
Mar	sort by frequency	+ b o	0.013
arl		the	0.013
rle		he_ and	0.011
ley		and	0.007
ey_		nd	0.007
У_М		ed	0.006
_wa			
was			

Preparing character n–gram profile (n=3, L=5)

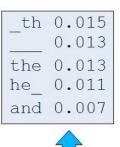
Marley was dead: to begin with.

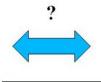
There is no doubt whatever about that...

n=3		_th	0.015	
Mar	sort by frequency		0.013	I=5
arl		the	0.013	L=3
rle		he_	0.011	
ley		and	0.007	
ey_		_an	0.007	
У_W		nd_	0.007	
ya		ed_	0.006	
was				

How to measure profile similarity?

Dickens: Christmas Carol





_th 0.017 __ 0.017 the 0.014 he_ 0.014 ing 0.007

Dickens: A Tale of Two Cities

th	0.016
the	0.014
he	0.012
and	0.007
nd_	0.007

Carroll: Alice's adventures in wonderland

CNG Similarity Measure

- Euclidean-style distance with relative differences, rather than absolute
- Example: instead of using 0.88-0.80=0.10, we say it is about 10% difference, which is the same for 0.088 and 0.080
- To be symmetric, divide by the arithmetic average:

$$d(f_1, f_2) = \sum_{n \in \mathsf{dom}(f_1) \cup \mathsf{dom}(f_2)} \left(\frac{f_1(n) - f_2(n)}{\frac{f_1(n) + f_2(n)}{2}} \right)^2$$

ullet $dom(f_i)$ is the domain of function f_i , i.e., of the profile i

Classification using CNG

- Create profile for each class using training text
 - done by merging all texts in each class into one long document
 - another option: centroid of profiles of individual documents
- Create profile for the test document
- Assign class to the document according to the closest class profile according to the CNG distance

Edit Distance

Another text similarity measure

Edit Distance: Introduction

- Edit distance is a similarity measure convenient for words and short texts, robust for typos and morphological differences
- Tends to be too expensive for longer texts
- Consider typical errors that cause typos:
 - there → thre (missed a letter)
 - ullet there o theare (inserted an extra letter)
 - there \rightarrow yhere (mistyped a letter)
- Task: find a word in lexicon most likely to produce incorrect word found in text

Edit Distance: Brute Force Approaches

- one approach: search lexicon and try deleting, inserting, and replacing each of the letters, and compare with mistyped word
- this is already quite expensive, but what with multiple errors?
- Can we find the minimal number of edit operations (deletes, inserts, or substitutions) that would lead from a source string s to the target string t?
- This is minimal edit distance it always exists because we can always delete |s| letters and insert |t| letters, so it is always $\leq |s| + |t|$

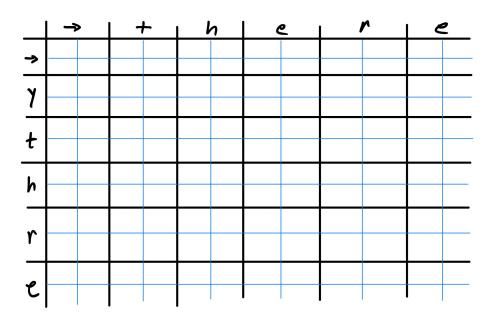
Edit Distance: Properties

- Reflexive: d(s,t) = 0 if and only if s = t
- Symmetric: d(s,t)=d(t,s), because edit operations are reversible
- Transitive: $d(s,t) + d(t,v) \ge d(s,v)$
- Can be parametrized with $cost_d(c)$, $cost_i(c)$, $cost_s(c,d)$ for all characters c and d; positive cost functions with exception $cost_s(c,c) = 0$
- If cost is 1 for delete and insert, and 2 for substitute operations, it is also known as the Levenshtein distance [JM] (all cost= 1 according to some sources)

Edit Distance: Dynamic Programming Idea

• calculate optimal distance between s=xe and t=yf using optimal distances between xe and y, x and yf, and x and y

Efficient adaption of win Edit Distance - a dynamic programming approach source string Example: there thre ythre



	->		-	-	h		ا و		, <i>r</i>		l e	
1		0	1	1	2	2	3	3	4	5	5	5
Y		سار	- 1	2	2	3	3	4	4	5	5	6
		1	2	1	Z	2	3	3	4	4	5	5
L		2		2	7	3	3	4	4	5	5	6
t		2	3		2	2	3	3	4	4	5	5
_		ን	3	2		3	3	4	4	5	5	6
h		3	4	2	3		2	Z	3	3	4	5
•		4	4	3	3	2	2	3	2	4	4	5
۴		4	5	3	4	2,	3	Z	3	2	3	3
_		5	5	4	4	3	2	3	3	3	2	5
2		5	6	4	5	3	4	2	3	3	4	2

Edit Distance Algorithm

```
Algorithm EditDistance(s,t)
n = len(s); m = len(t)
d[m+1,n+1] - initialize to 0s
for i=1 to n do d[0,i] = d[0,i-1] + cost_d(s[i-1])
for j=1 to m do d[j,0] = d[j-1,0] + cost_i(t[j-1])
for j=1 to m do
  for i=1 to n do
    d[j,i] = min(d[j-1,i-1] + cost_s(s[i-1],t[j-1]),
                  d[j-1,i] + cost_i(t[j-1]),
                  d[i,i-1] + cost_d(s[i-1])
return d[m,n]
```