Natural Language Processing CSCI 4152/6509 — Lecture 2 Ambiguities in NLP; Course Project

Instructors: Vlado Keselj

Time and date: 14:35 – 15:55, 25-Sep-2025 Location: Studley LSC-Psychology P5260

Previous Lecture

- Syllabus and web site review
- Course Introduction
 Introduction to NLP
- Definition of NLP
- Some NLP applications
- NLP as a research area
- Short history of NLP
- NLP methodology overview
- Levels of NLP

NLP is Generally Hard

- NLP problems were tackled since 1950s
 - progress has been surprisingly slow and difficult
- Some external evidence of why NLP would be hard:
 - Turing test (imitation game)
 - ► Evidence from neuro-science:

 "A defining difference between man and non-human primates has been found in the circuitry of brain cells involved in language, according to researchers at the Medical College of Georgia."

Some Computational Reasons that NLP is Hard

- 1. highly ambiguous
 - not easy to program disambiguation
- 2. vague (the principle of minimal effort)
 - not easy to program the context and a priori knowledge
- 3. universal (domain independent)
 - not easy to program general knowledge representation

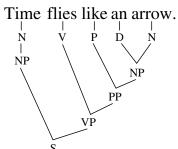
All of these require reasoning (inference)

Ambiguities at Many Levels of NLP

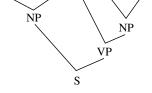
- Ambiguities of different types happen at all levels of NLP
- We will look at some examples at different levels of NLP

Phonological Ambiguities

- For example, the following words sound the same:
- two and too, sometimes even to
- would and wood
- there and their
- it's and its
- sea and see
- I scream and ice cream


Syntactic Level Ambiguity

- Example: *Time flies like an arrow.* and consider: *Time flies like an arrow... and fruit flies like a banana.*
- Two meanings represented by two parse trees:


Time flies like an arrow. Time flies like an arrow.

Syntactic Level Ambiguity

- Example: *Time flies like an arrow.* and consider: *Time flies like an arrow... and fruit flies like a banana.*
- Two meanings represented by two parse trees:

Time flies like an arrow.

Similar Examples of Syntactic Ambiguity

- Swat flies like ants.
- I saw a man with a telescope.
- I made her duck.
- I bought a computer with a smart card.
- The cow was found by a stream by a farmer.
- Flying planes can be dangerous.
- They are hunting dogs.
- Eye Drops Off Shelf.
- I'm glad I'm a man, and so is Lola.
- Somewhere in the world a woman gives birth every nine minutes.

Semantic Ambiguities

- semantic lexical ambiguity, e.g. "hot" may mean: having high temperature, spicy, intense, good looking, or stolen
- Semantic ambiguity examples at the phrase level:
 - What does "coast road" mean? Is it a road that leads to a coast, or a road that follows the coast?
 - "carriage return" Is it a return of a carriage, or an ASCII character?
 - "kick the bucket", and other idioms
- referential ambiguity a kind of semantic ambiguity, or it can be considered discourse ambiguity
 Example: 'It.' or 'he' in a text – what and who

Example: 'It,' or 'he' in a text – what and who does it refer to?

Pragmatic-level Ambiguity

Examples:

- 12am is it noon or midnight?
- What date is 10/11/12. Nov 10 or Oct 11 of 2012?

About Course Project

About Course Project

- CSCI 4152:
 - Research or Implementation
 - Individual or Group Presentations
- CSCI 6509 (MCS, PhD, thesis students):
 - Research Project, Individual or Group
 - Individual Presentations
- CSCI 6509 (MACS, MDI non-thesis)
 - Research, Implementation, or Business Oriented
 - Individual or Group Presentations
- Individual projects or teams of up to 4 students
- Preference for a presentation time slot: by email
- Electronic submissions will likely be via GitLab

Course Project

- Deliverables: P0, P1, Presentation, Report
 - P0 topic proposal,
 - due Fri Oct 10, worth 1%, plain text by email
 - P1 project statement,
 - ⋆ due Fri Nov 7, worth 5%, PDF,
 - P presentation,
 - ★ book a time slot, submit slides, worth: 10%,
 - R report,
 - * due Tue Dec 9, worth: 20%, PDF electronic submission.

Emails and Project Web Page

- Use course number in email subject lines, ideally 'CSCI4152/6509'
- For deliverables, follow the requirements, but the course number is always required in the subject line if delivered by e-mail
- Check the project web page at: https://web.cs. dal.ca/~vlado/csci6509/project.html
- The web page contains additional information and will be updated during the term

P0 — Project Topic Proposal

- Worth: 1% of the final mark
- If you choose topic earlier, send it earlier
- If topics overlap too much, later submission may be required to change it
- Plain-text email submission (no attachments) with
 - tentative title
 - list of team members
 - one-paragraph description

P1 — Project Statement

- Worth 5% of the final mark
- Through GitLab (will be clarified later) (text or PDF), about 2 pages
- It must include:
 - Project title,
 - Names of the member(s) of the group,
 - Problem statement,
 - List of possible approaches with citations to relevant work,
 - Project plan for the rest of the term, and
 - List of references.

P — Oral Presentation

- Worth: 10% of the final mark
- Send me preference about time slot by email
- Submit slides at least 24h before presentation
- 8min presentation + 4min for questions (total 12min)
- Use your computer
- Content: related to project, but in a wide sense
- Evaluation:
 - content: interesting, appropriate
 - presentation: vivid, interesting
 - slides: organization, use of text and figures
 - question-answering: to the point

R — Project Report

- Worth: 20% of the final mark
- Submitted electronically
- Typical project report structure:
 - ▶ Title, author, course name, date
 - Abstract
 - 1. Introduction, 2. Related work
 - 3. Problem description, Methodology
 - 4. Experiment design, implementation
 - 5. Evaluation
 - 6. Conclusion
 - References, Appendices

How to Choose Project Topic

- Some more information in lecture notes
- A typical approach to a research project
- Alternative project types:
 - theoretical project
 - implementation-oriented
 - software evaluation
 - survey

Resources

- NLP Research Links on the course web page
- http://acl.ldc.upenn.edu/ ACL Anthology
- Google scholar and other scientific Internet resources
- Dalhousie library

Example Themes

- These are some themes related to current research at Dal CS
- However, you are encouraged to think about other, different areas
- Themes:
 - Analysis of social media data (e.g., Twitter)
 - Author attribution and profiling
 - Sentiment analysis
 - Processing of email data
 - Language, dialect detection; demographic analysis using NLP, etc.

Topics of Some Previous Course Projects

- The Effects of Sentence Simplification as a Preprocessing Step in Text Summarization
- An Analysis of Predictive Text Software and Algorithms
- Extraction of Topics and Clustering of Documents using Topic Modeling Algorithm
- Role of Emoticons for Sentiment Analysis
- Author Profiling for Keyboard Layouts to Understanding User Typing Pattern
- Natural Language Math Problem Assistance Tool
- Canadian Happiness Level Mapping by Using Twitter Data
- Detection of Emotion and Emotion Stimuli in Text
- and many more are included in the notes.

Part II: Stream-based Text Processing

- Considering text as a stream of characters, words, and lines of text
- Review of Finite Automata and Regular Expressions
- Review of Unix-style text processing
- Introduction to Perl
- Morphology fundamentals
- N-grams
- Reading: Chapter 2, Jurafsky and Martin

Finite-State Automata

- Regular Expressions and Regular Languages
- Regular Languages can be described using
 - Regular Expressions
 - Regular Grammars
 - Finite-State Automata (DFA and NFA)
- DFA = Deterministic Finite Automaton
- NFA = Non-deterministic Finite Automaton
- also referred to as Finite-State Machines

Typical Low-level NLP Tasks

- Pre-processing text
- Tokenization
- Sentence Segmentation
- Morphological Processing (e.g., Stemming)
- "Vectorizing" Text
- Information Extraction (simpler cases)
- and so on

Example Task: Removing HTML Tags

Deterministic Finite Automaton

- Formally defined as a 5-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q is a set of states
 - $ightharpoonup \Sigma$ is an input alphabet
 - $\delta: Q \times \Sigma \to Q$ is a transition function
 - $q_0 \in Q$ is the start state
 - $F \subset Q$ is a set of final or accepting states
- Graph representation is frequently used
- Consider finite automata for sets of strings:
 baaa...a! ha-ha-...-ha
 up-up-down-up-down-up-up-...down

DFA for language baa...a! using a graph